How I treat high-risk Hodgkin lymphoma in first line

Stephen M. Ansell, MD, PhD

Dorotha W. and Grant L. Sundquist Professor in Hematologic Malignancies Research

Chair, Division of Hematology

Mayo Clinic

Disclosures for

Stephen Ansell, MD, PhD

In compliance with ACCME policy, Mayo Clinic requires the following disclosures to the activity audience:

Research Support/P.I.	PI – SeaGen, BMS, Affimed, Regeneron, Pfizer, Takeda, AstraZeneca, ADC Therapeutics for clinical trials
Employee	N/A
Consultant	N/A
Major Stockholder	N/A
Speakers' Bureau	N/A
Scientific Advisory Board	N/A

What is the goal of frontline therapy in Hodgkin lymphoma?

- To cure more patients
 - Treatment needs to increase survival
- To limit long term toxicity
 - Treatment *must not decrease survival*

Historically we had 2 approaches -

• Low-intensity first-line therapy (like ABVD)

requires intensifying treatment for poor metabolic responders to improve lymphoma control

- To possibly cure more patients.
- High-intensity first-line therapy (like escBEACOPP)

requires a reduction in treatment in good responders, with the aim of improving safety.

- To limit long term toxicity
- Need a PET-driven strategy to achieve this

Limited stage Hodgkin lymphoma – RT or not?

Risk Factors for Early-Stage Hodgkin lymphoma

Table 1 | Definition of early stage unfavourable HL depending on the study groups*

Risk factors	EORTC	GHSG	NCIC/ECOG	NCCN 2010
Large mediastinal mass (>1/3)	Yes	Yes	No	Yes or >10 cm
Histology other than LP/NS	No	No	Yes	No
Age	≥50 years	No	≥40 years	No
Extranodal disease	No	Yes	No	>1 lesion
ESR ≥50mm/h without B-symptoms or ≥30mm/h with B-symptoms	Yes	Yes	Yes, if ≥50	Yes, if ≥50 or any B-symptoms
Number of nodal areas involved	≥4 nodal areas	≥3 nodal areas	≥4 nodal areas	≥3 nodal areas

*All patients must have stage I or II disease according to the Ann–Arbor classification (that is, involved lymph node regions only on one side of the diaphragm). Abbreviations: ECOG, Eastern Cooperative Oncology Group; EORTC, European Organisation for Research and Treatment of Cancer; ESR, erythrocyte sedimentation rate; GHSG, German Hodgkin Study Group; HL, Hodgkin Lymphoma; LP, lymphocyte predominance; NCCN, National Comprehensive Cancer Network; NCIC, National Cancer Institute of Canada; NS, nodular sclerosis.

The role of the interim PET in limited stage cHL to direct therapy

RAPID Trial (n=571; 2/3 favorable) – PET negative – ABVD x3 versus ABVD x3 + IFRT PET Positive – ABVD x4 + IFRT

EORTC/LYSA/FIL H10 Trial (n=754; EORTC favorable) – Standard Arm – ABVD x3 + INRT Experimental Arm – PET directed PET negative – ABVD x 4 PET positive – ABVD x 2, escBEACOPP x 2, INRT

GHSG HD16 (n=1150; GHSG favorable) – Standard Arm – ABVD x 2 + 20Gy IFRT Experimental arm – PET directed IFRT only if PET positive

RAPID trial of PET-directed therapy for early-stage Hodgkin's lymphoma

PET negative – ABVD x3 versus ABVD x3 + IFRT

Radford et al. N Engl J Med. 2015 Apr 23;372(17):1598-607.

H10 Trial: Progression-free survival of 1,059 early positron emission tomography-negative patients

Standard Arm – ABVD x3 + INRT

Experimental Arm – PET directed

PET negative – ABVD x 4

PET positive – ABVD x 2, escBEACOPP x 2, INRT

André et al. J Clin Oncol. 2017 Jun 1;35(16):1786-1794.

PET-Guided Treatment in Early-Stage Favorable Hodgkin

Lymphoma: HD16 Trial

Standard Arm – Experimental arm –

ABVD x 2 + 20Gy IFRT

Experimental arm – PET directed

IFRT only if PET positive

Fuchs et al. J Clin Oncol. 2019 Nov 1;37(31):2835-2845.

HD16: PET-2-neg and PET-2-pos patients assigned to receive

RT: Does the DS cut point matter?

Fuchs et al. J Clin Oncol. 2019 Nov 1;37(31):2835-2845.

A real-world study of combined modality therapy for early-stage Hodgkin lymphoma: too little treatment impacts outcome

<u>Limited stage Hodgkin lymphoma – RT or not?</u>

- PET-directed therapy is feasible and may impact therapy, but not as one may think –
 - If PET2 is negative, omitting RT negatively impacts PFS
 - If PET2 is positive, escalating therapy may improve outcome

My view –

- Simply omitting RT should be done with caution particularly in patients with bulky disease, poor prognostic features
- Consider proton beam, clinical trial adding novel agents

Advanced stage Hodgkin lymphoma – BV(N)-AVD vs A(B)VD?

Prognostic Factors in Hodgkin Lymphoma

Advanced Disease

Age \geq 45 years Stage IV Male sex White blood count \geq 15,000 cells/µl Lymphocyte count < 600 cells /µl or <8% Albumin < 4.0 g/dL Hemoglobin < 10.5 g/dL

Hasenclever et al. NEJM 1998; 339: 1506-1514

The role of PET scans in advanced stage cHL to direct therapy

RATHL study

GHSG HD18 study

AHL2011 study

<u>Start low</u> – switch to intense therapy if needed Drop toxic drug if doing well

<u>Start high</u> – decrease number of cycles of intense therapy if doing well

Start high – switch to less intense therapy if doing well Test <u>whether PET approach impacts</u> <u>outcome</u>

Trotman et al. Lancet Haematol. 2021 Jan;8(1):e67-e79.

Treatment Guided by PET in Advanced Hodgkin Lymphoma: RATHL Trial

PET-2 negative

PET-2 positive

My conclusions –

If you start with ABVD, you can drop the bleomycin if PET-2 negative

Not clear that escalating therapy in PET-2 patients improves outcome

> Johnson et al. N Engl J Med. 2016 Jun 23;374(25):2419-29. Luminari et al. ASH 2022; #315

HD18: PFS and overall survival for patients with negative PET-2

4 cycles vs 6/8 cycles

My conclusions –

If you start with eBEACOPP, you can decrease to 4 cycles if PET-2 negative

8 cycles of escBEACOPP <u>decreases survival</u> compared to 4 cycles

4 cycles vs 6 cycles

Borchmann et al. Lancet. 2018 Dec 23;390(10114):2790-2802. Kreissl et al. Lancet Haematol. 2021 Jun;8(6):e398-e409.

AHL2011: PFS and survival outcomes by treatment group

Intent to Treat

Per Protocol

My conclusions -

If you start with escBEACOPP, you can switch to ABVD if PET-2 negative

Whether based on ITT or per protocol, a PETdirected treatment approach doesn't actually impact survival.

Casasnovas et al. Lancet Oncol. 2019 Feb;20(2):202-215. Casasnovas R, et al. J Clin Oncol. 2022 Apr 1;40(10):1091-1101. A PET-driven strategy definitely decreases toxicity – but it doesn't really improve survival

Adding **novel targeted agents** to well-tolerated treatment combinations (like AVD) may achieve <u>both low toxicity and improved outcome</u>

<u>Outcomes with Brentuximab Vedotin + AVD vs. ABVD in Stage III</u> <u>or IV Hodgkin's Lymphoma</u>

PFS

Outcome with Brentuximab Vedotin + AVD is improved vs. ABVD in both PET positive and PET-negative patients

6-year OS favored
A+AVD for both PET2negative patients
(94.9% vs. 90.6)
and PET2-positive
patients (95% vs. 77%).

BrECADD Proves Non-inferior to eBEACOPP in Advanced Classical Hodgkin Lymphoma (HD21 trial)

BrECADD - brentuximab vedotin, etoposide, cyclophosphamide, doxorubicin, dacarbazine, and dexamethasone

1500 patients, 749 were randomly assigned to eBEACOPP and 751 were assigned to BrECADD.

At a median follow-up of 40 months, the estimated 3-year PFS rate with BrECADD (n = 740) was 94.9% (99% CI, 92.8%-97.1%) vs 92.3% (99% CI, 89.7%-94.9%) with eBEACOPP (n = 742) in the intention-to-treat (ITT) population (HR, 0.63; 99% CI, 0.37-1.07).

The 1-year PFS rate with BrECADD was 97.5% (99% CI, 96%-99%).

The estimated 3-year OS rate was 98.5% in both the BrECADD and eBEACOPP arms

Rationale for PD-1 blockade in cHL

- PD-1 ligand genetic alterations (chr 9p24.1) central to cHL pathogenesis⁷
 - More 9p24.1 genetic alteration in advanced stage cHL⁷
 - \uparrow 9p24.1 alteration \rightarrow poorer outcome with standard frontline therapy⁷
- Nivolumab highly effective in relapsed or refractory cHL (ORR ~70%) 8,9

7. Roemer MGM et al JCO 2016. 8. Armand P et al JCO 2018. 9. Younes A et al Lancet Oncol 2016.

#ASCO23

Incorporating PD-1 blockade into initial cHL therapy is well-tolerated and highly effective

- Studies of frontline PD-1 blockade in cHL have been promising^{10,11,12,13}
 - N-AVD well-tolerated
 - Excellent PFS

#ASCO23

ASCC

1L Nivolumab-AVD in advanced stage cHL

10. Bröckelmann PJ et al JCO. 2023 11. Ramchandren R et al JCO 2019 12. Allen PB, et al Blood. 2021 13. Lynch RC et al Blood 2023

S1826 Study Design

#ASCO23

^a Nivolumab 3mg/kg for ages ≤ 17, max 240mg ^b Conventional doses of AVD: Stephens DM et al Blood 2019, Ansell SM et al NEJM 2022

AEs of interest: Hematologic

Toxicity	N-AVD n = 483		Bv-AVD n = 473	
	Any Gr N (%)	Gr ≥ 3 N (%)	Any Gr N (%)	Gr ≥ 3 N (%)
Neutropenia	268 <mark>(55%)</mark>	227 <mark>(47%)</mark>	152 <mark>(32%)</mark>	118 <mark>(25%)</mark>
Anemia	185 (38%)	29 (6%)	207 (44%)	42 (9%)
Thrombocytopenia	48 (10%)	8 (2%)	82 (17%)	15 (3%)
Received G-CSF	265 (<mark>54%)</mark>		463 <mark>(95%)</mark>	
Bone pain	39 (8%)		94 (20%)	

More neutropenia after N-AVD

More growth factor use, bone pain in Bv-AVD arm

#ASCO23

AEs of Interest: Peripheral Neuropathy

Toxicity	N-AVD n = 483		Bv-AVD	
			n = 473	
	Any Gr N (%)	Gr ≥ 3 N (%)	Any Gr N (%)	Gr ≥ 3 N (%)
Peripheral sensory	138 <mark>(29%)</mark>	6 (1%)	262 <mark>(55%)</mark>	37 <mark>(8%)</mark>
neuropathy				
Peripheral motor	20 (4%)	1 (0%)	35 (7%)	6 (1%)
neuropathy				

More neuropathy in Bv-AVD arm

2023 ASCO

ANNUAL MEETING

#ASCO23

Nivolumab+AVD for Newly Diagnosed Advanced-Stage cHL

Herrera et al. J Clin Oncol 41, 2023 (suppl 17; abstr LBA4).

PFS benefit consistent across subgroups

2023 ASCO

ANNUAL MEETING

#ASCO23

Conclusions

- First-line N-AVD improved PFS compared to Bv-AVD in advanced stage Hodgkin lymphoma
- N-AVD was well-tolerated
 - Few immune-related adverse events
 - <1% received RT
- Study included adolescent patients, demonstrating that protocols could be harmonized across the pediatric-adult spectrum
- Issues to think about:
 - Short follow-up
 - How will those curves change over time?
 - What will we do in the relapse setting?
- Likely practice-changing

<u>Advanced stage Hodgkin lymphoma –</u> <u>BV(N)-AVD vs A(B)VD?</u>

- PET-directed therapy omitting bleomycin as per RATHL is feasible and impacts pulmonary toxicity of therapy
- BV + AVD is associated with more neutropenia (requires growth factor administration) and more neuropathy

My take –

- It is hard to argue with a survival advantage for BV-AVD
- BV-AVD allows for a "set it and leave it" approach
- N-AVD may be better than BV-AVD